Deterministic diffusion in flower-shaped billiards.
نویسندگان
چکیده
We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.
منابع مشابه
Time-Dependent Billiards
Dynamical systems of a billiard type are a fundamental notion relevant for the understanding of numerous phenomena observed in statistical mechanics, Hamiltonian dynamics, nonlinear physics, and others. By means of billiard models, the principal ideas as Boltzmann ergodic hypothesis, related to the foundation of statistical physics, and deterministic diffusion gained more deep insight. However,...
متن کاملNegative Magneto-Resistance Beyond Weak Localization in Three-Dimensional Billiards: Effect of Arnold Diffusion
We investigate a semiclassical conductance for ballistic open threedimensional (3-d) billiards. For partially or completely broken-ergodic 3-d billiards such as SO(2) symmetric billiards, the dependence of the conductance on the Fermi wavenumber is dramatically changed by the lead orientation. Application of a symmetry-breaking weak magnetic field brings about mixed phase-space structures of 3-...
متن کاملDeterministic Approximations of Random Reflectors
Within classical optics, one may add microscopic “roughness” to a macroscopically flat mirror so that parallel rays of a given angle are reflected at different outgoing angles. Taking the limit (as the roughness becomes increasingly microscopic) one obtains a flat surface that reflects randomly, i.e., the transition from incoming to outgoing ray is described by a probability kernel (whose form ...
متن کاملQuantal Andreev billiards: Density of states oscillations and the spectrum-geometry relationship
Andreev billiards are finite, arbitrarily shaped, normal-state regions, surrounded by superconductor. At energies below the superconducting energy gap, single-quasiparticle excitations are confined to the normal region and its vicinity, the mechanism for confinement being Andreev reflection. Short-wave quantal properties of these excitations, such as the connection between the density of states...
متن کاملChaotic Dynamics, Fractals, and Billiards
Chaotic dynamics occur in deterministic systems which display extreme sensitivity on initial conditions. These systems often have attractors which are geometric figures exhibiting affine self-similarity that have non-integer dimension, otherwise known as fractals. We investigated the link between chaos and the eventual fate of a ball on a frictionless elliptical billiards table with one pocket....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 66 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2002